PROPOSITIONAL RULES | ||
RULE | PREMISES | CONCLUSION |
MP | ϕ, ϕ→ψ | ψ |
MT | ¬ψ, ϕ→ψ | ¬ϕ |
DNE | ¬¬ϕ | ϕ |
DNI | ϕ | ¬¬ϕ |
SIMP | ϕ∧ψ | ϕ ψ |
ADJ | ϕ, ψ | ϕ∧ψ |
MTP | ϕ∨ψ, ¬ϕ | ψ |
MTP | ϕ∨ψ, ¬ψ | ϕ |
ADD | ϕ | ϕ∨ψ |
ADD | ψ | ϕ∨ψ |
BC | ϕ↔ψ | ϕ→ψ ψ→ϕ |
CB | ϕ→ψ, ψ→ϕ | ψ↔ϕ |
HS | ϕ→ψ, ψ→χ | ϕ→χ |
CND | ϕ | ψ→ϕ |
CND | ¬ϕ | ϕ→ψ |
NCND | ¬(ϕ→ψ) | ϕ∧¬ψ |
NCND | ϕ, ¬ψ | ¬(ϕ→ψ) |
CONP | ϕ→ψ | ¬ψ→¬ϕ |
CONP | ¬ψ→¬ϕ | ϕ→ψ |
DIL | ϕ→ψ, ¬ϕ→ψ | ψ |
CM | ¬ϕ→ϕ | ϕ |
EFQ | ¬ϕ, ϕ | ψ |
DM | ¬ϕ∧¬ψ | ¬(ϕ∨ψ) |
DM | ¬(ϕ∨ψ) | ¬ϕ∧¬ψ |
DM | ¬ϕ∨¬ψ | ¬(ϕ∧ψ) |
DM | ¬(ϕ∧ψ) | ¬ϕ∨¬ψ |
CASES | ψ∨χ, ψ→ϕ, χ→ϕ | ϕ |
SYMBOL | DESCRIPTION |
χ | CHI |
ϕ | PHI |
ψ | PSI |
→ | IMPLIES |
↔ | IF AND ONLY IF |
¬ | NOT |
𝔻 | DOMAIN |
∧ | AND |
∨ | OR |
⊻ | XOR |
⊤ | TAUTOLOGY |
⊥ | CONTRADICTION |
∀ | FOR EACH |
∃ | EXISTS |
∃! | NOT EXISTS |
≡ | DEFINITION |
⊢ | PROVES |
⊨ | MODELS |
CASES 1. SHOW: P 2. Q v R :PR 3. Q->P :PR 4. R->P :PR 5. SHOW: ~~P 6. ~P :AS 7. ~Q :MT 3 6 8. ~R :MT 4 6 9. ~Q/\~R :ADJ 7 8 10 SHOW: ~(Q v R) 11. Q v R :AS 12. ~R :S 9 13. Q :MTP 11 12 14. ~Q :S 9 15. :ID 13 14 16. :ID 2 10 17. P :DNE 5 18. :DD 17 CM 1. SHOW: P 2. ~P->P :PR 3. SHOW: ~~P 4. ~P :AS 5. P :MP 2 4 6. :ID 4 5 7. P :DNE 3 8. :DD 7 CND_1 1. SHOW: Q->P 2. Q :AS 3. P :PR 4. :CD 3 CND_2 1. SHOW: P->Q 2. P :AS 3. ~P :PR 4. SHOW: ~~Q 5. ~Q :AS 6. :ID 2 3 7. Q :DNE 4 8. :CD 7 CONP_1 1. SHOW: ~Q->~P 2. ~Q :AS 3. P->Q :PR 4. ~P :MT 2 3 5. :CD 4 CONP_2 1. SHOW: P->Q 2. P :AS 3. ~Q->~P :PR 4. ~~P :DNI 2 5. ~~Q :MT 3 4 6. Q :DNE 5 7. :CD 6 DIL 1. SHOW: Q 2. P->Q :PR 3. ~P->Q :PR 4. SHOW: ~~Q 5. ~Q :AS 6. ~~P :MT 3 5 7. ~P :MT 2 5 8. :ID 6 7 9. Q :DNE 4 10 :DD 9 EFQ 1. SHOW: Q 2. P :PR 3. ~P :PR 4. SHOW: P->Q 5. SHOW: ~~Q 6. ~Q :AS 7. :ID 2 3 8. Q :DNE 5 9. :CD 8 10 Q :MP 2 4 11. :DD 10 DM_1 1. SHOW: ~(P v Q) 2. P v Q :AS 3. ~P/\~Q :PR 4. ~P :S 3 5. Q :MTP 2 4 6. ~Q :S 3 7. :ID 5 6 DM_2 1. SHOW: ~P/\~Q 2. ~(P v Q) :PR 3. SHOW: ~P 4. P :AS 5. P v Q :ADD 4 6. :ID 2 5 7. SHOW: ~Q 8. Q :AS 9. P v Q :ADD 8 10 :ID 2 9 11. ~P/\~Q :ADJ 3 7 12. :DD 11 DM_3 1. SHOW: ~(P/\Q) 2. P/\Q :AS 3. ~P v ~Q :PR 4. P :S 2 5. ~~P :DNI 4 6. ~Q :MTP 3 5 7. Q :S 2 8. :ID 6 7 DM_4 1. SHOW: ~P v ~Q 2. SHOW: ~~(~P v ~Q) 3. ~(~P v ~Q) :AS 4. ~(P/\Q) :PR 5. SHOW: ~~P/\~~Q 6. SHOW: ~~P 7. ~P :AS 8. ~P v ~Q :ADD 7 9. :ID 3 8 10 SHOW: ~~Q 11. ~Q :AS 12. ~P v ~Q :ADD 11 13. :ID 3 12 14. ~~P/\~~Q :ADJ 6 10 15. :DD 14 16. ~~P :S 5 17. ~~Q :S 5 18. P :DNE 16 19. Q :DNE 17 20. P/\Q :ADJ 18 19 21. :ID 4 20 22. ~P v ~Q :DNE 2 23. :DD 22 HS 1. SHOW: Q->R 2. Q :AS 3. Q->P :PR 4. P->R :PR 5. P :MP 2 3 6. R :MP 4 5 7. :CD 6 NCND_1 1. SHOW: P/\~Q 2. ~(P->Q) :PR 3. SHOW: ~~P 4. ~P :AS 5. SHOW: P->Q 6. P :AS 7. SHOW: ~~Q 8. ~Q :AS 9. :ID 4 6 10 Q :DNE 7 11. :CD 10 12. :ID 2 5 13. P :DNE 3 14. SHOW: ~Q 15. Q :AS 16. SHOW: P->Q 17. P :AS 18. :CD 15 19. :ID 2 16 20. P/\~Q :ADJ 13 14 21. :DD 20 NCND_2 1. SHOW: ~(P->Q) 2. P->Q :AS 3. P :PR 4. ~Q :PR 5. Q :MP 2 3 6. :ID 4 5 QN_1 1. SHOW: Ax~F(x) 2. ~ExF(x) :PR 3. SHOW: ~F(x) 4. F(x) :AS 5. ExF(x) :EG 4 6. :ID 2 5 7. :UD 3 QN_2 1. SHOW: Ex~F(x) 2. ~AxF(x) :PR 3. SHOW: ~~Ex~F(x) 4. ~Ex~F(x) :AS 5. SHOW: Ax~~F(x) 6. SHOW: ~~F(x) 7. ~F(x) :AS 8. Ex~F(x) :EG 7 9. :ID 4 8 10 :UD 6 11. SHOW: AxF(x) 12. ~~F(c) :UI 5 13. F(c) :DNE 12 14. :UD 13 15. :ID 2 11 16. Ex~F(x) :DNE 3 17. :DD 16